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M dels for Time Series. The following a lies 
2·3•1. Mathematidca o sition of a time series into its components re the two 

nly used for the ecompo • . . 11\o~ commo . . b Additive Hypothesis (or Additive Model) ,. ~e1, 
. (i) Decomposition y ed as . nccor~:-. . es can be express "'-lll.g t 
additive model, a time sen C R 

O th Yt = Tt + S, + t + t e 
. alue at time t T 1 represents the trend val ( · th f e series v ' ue s · · · 2 where Yt 1s e im -

1 
r and random fluctuations at time t. Obviously tb t, C1 !Ill ·l) 

represent ~e seaso~a ':r:i~ual data. The additive model implicitly implies e telln s1!1 
not appear m a series ) cyclical forces (in different cycles) and irregu} that seasoWil! 
forces (in different ye~r~),operate with equal absolute effect irrespective ofth ar · forces ~al 
different lo~g P:~~ave positive or negative values, according as whethe; trend "al111n 
As such Ct be'{';w normal phase of the cycle (and year) and the total of ;e ~e in a~ 
above_normal or fi any cycle ( and any year) will be zero. R, will also hav os1t1ve &nd 
negative va .ues or .11 b O • ll e Posit' . l din the long-term er. Rt) Wl e zero. ccas1ona Y, there m lVe or 
negative va ue an . . ay be a£ 
isolated occurrences of extreme Rt of ep1sod1c nature. ew 

The additive model assumes that all the four components of the time series o er 
independently of each other so that none of these components has any effect :n :e 
remaining three. e 

(ii) Decomposition by Multiplicative Hypothesis (or Multiplicative Model) 0 
h h · . · nthe 

other hand, if we have reasons to assume t at t e various components m a time . 
operate proportionately to the generaLlevel of the series, the traditional or classenes · h lt' l' ti d l sical multiplicative model is appropriate. Accordmg to t e mu 1p 1ca ve mo e , 

_ Yt = Tt x St x Ct x Rt ... (2·2) 
where Si, C

1 
and Rt , instead of assum~g positive an~ negative v~ue, are indices fluctuating 

above or below unity and the geometric means of S1 m a year, C1 ID a cycle a.I}d R1 in a Jong. 
term period are unity. In a time series with both positive end negative values, the 
multiplicative model can not be applied unless the· time series is trans\a~ed by adding a 
suitable positive value. It may be pointed out that the multiplicative decomposition of a time 
series is same as the additive decomposition of logarithmic values of the original time series, 
i.e., 

. -1 log Yt = log T1 + log S 1 + log C1 + log Rt 
In practice, most of the series relating to economic data conform to multiplicative model' 

Remarks 1. Limitations of the Hypothesis of Decomposition of a Time Series. Hypot)iesis of 
decomposition presupposes that the trend and periodic components are determined by separate forces 

. actjng independently so that simple aggregation of the components could constitute the series. But m 
reality, it is possible t~at_ this year's value of the series will depend to some extent on l~st year's ~alue 
so that ~end and_ penod1c movement will get inextricably mixed up and no meaningf,ul sep~ation of 
them "'.111 be possible. ~n such a case. any variations of this year may affect the w bole futµre course of 
the senes and no meaningful separation of trend and periodic components will be possible. 

2. Mixed Models. In addition to the additive and multiplicative models discussed above, ~e 
components in a time series may be combined in a large number of otbJr ways. The different mod~ 

5
' 

defined under different assumptions will yield different results. Some of the mixed models resulting 
from different combinations of additive and multiplicative models are given below : 

Yt = T1 C1 +S1 R1 

Y, = T, + S, C,R, 

Y, =T,+S,+·C,R, l ... (2·20) 
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'- odel (2· l) or (2·2) can be used to obtain a mea f 
3. '!'he Ill iz subtraction or division. For example if tr:u~e O one or more of the components by 

l
i!lUnati0~• v ~odel it can be isolated from the given time se~ ctom~onent (T1) is known, then using 

e . )ication • . . es o give : 
!lluJt!P S C R _ _ Ongi.nal values 

IX ,x t - T - -=:------=-
I Trend values .. . (2·2b) 

l'. the annual data, for which the seasonal component s · t th 'fhUS, 1or 1 18 no ere, we have 
Yt = T, xCI xRI cl xRI =Yt • . . . T1 ••• (2·2c) 

2 
Uses of Time Senes. The time senes analysis is of great · rt 2•3· • • t b t al er impo ance not only to 

..,,an or an economis u so to people working in various d" · 1. • 1 
b 

sinesSu• . S f. iscip mes m natura 
u. d physical sciences. ome o its uses are enumerated below . ' 

social an d th t b h · · 
1 I

t enables us to stu y e pas e aviour of the phenomenon under consider t· . to . d t f th . ti . a ion, i.e., 
ine the type an na ure o e vana ons m the data. 

deterIIl . d tud f th . . 
2
, The segregation an . s Y O e vanou~ components is of paramount importance to a 

businessman in the planning of future operations and in the formulation of executive and 

policy decisions. 
3
, It helps to compare the actual current performance of accomplishments with the 

expected ones (on the basis of the past performances) and analyse the causes of such 
variations, if any. 

4. It enables us to predict or estimate or forcast the behaviour of the phenomenon in 
future which is very essential for business planning. 

5. It helps us to compare the changes in the values of different phenomenon at different 
times or places, etc. )1 

In the following sections we shall discuss various techniques for the measurement of 
different components 

2•4. MEASUREMENT OF TREND 
Trend can be studied and/or measured by the following methods : 

(i) Graphic (or Free-hand Curve Fitting) Method, 
(ii) Method of Se"!,i-Averages, 

(iii) Method of Curve Fitting by Principle of Least Squares, and 
(iv) Method of Moving Averages. 

We shall now discuss each of these methods in detail. . 
2-4-1. Graphic Method. A free-hand smooth curve obtained on plotting the valuesyt 

against 't' enables us to form an idea about the general 'trend' of the series. Smoothing of the 
curve eliminates other components, viz. regular and irregular fluctuations. 

T~s method does not involve any complex mathematical techniques and can be used to 
de~cribe all types of trend, linear and non-linear. Thus, simplicity and flexibility are strong 
,point~ of this method. Its main drawbacks are : ,. 
•ve ~) The method is very subjective, i.e., the bias of the person h~dling t~e data plays a 
fo~h mportant role and as such different trend curves will be obtfuned by di~erent per~ons 

d e sa~e set of data. As such 'trend by inspection' '. should be: attempted only by skilled 
an experienced statisticians and this limits the utility and popularity of the method. 

(n) It d 
2 

oes not enable us to measure trend. 
Part ·4·~· Method of Semi-averages. In this method the wb,ole data is divided into two 

8 with res t · 11
' · ' 002 · · d ~f 12 Years the pee to time, e.g., if we are given Yt fort fre1nr l991-2 , i.e., over a peno . 

' two equal parts will be the data from 1991 to 1~96 atid 1997 to 2002. In case o odd 
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number of years the two parts are obtained by omitting the value corresp_onding to the 
middle year, e.g., for the data from 1991-2001 the value corresponding to middle year, viz. 
1996 being omitted. Next we compute the arithmetic mean for eacn part and plot these two 
averages (means) against the mid-values of the respective time-periods covered by each Part. 
The line obtained on joining these two points -is the required trend line and may be 
extended both ways to estimate intermediate or future values. 

Remark. For even number of _years fike 8, 12, 16, etc. the centering of averag:._of each part would 
create problems, e.g., from the data 1997-2002 (n = 12), let the two averages beX,, (say) for period 
1991-1996 and X2 (say), for the period 1991-2002. Here x,, will be plotted agains~ t~e mean of.two mid-
values, ur:z . 1993 and 1994 for the period 1991-1996 i.e. against 1st July 1993. Surularly, for the period 
1997-2002. ' ' . . 

Merits 1. As compared with graphic method the obvious advantage of this method is its 
objectivity in the sense that everyone who applies it would get the same results. Moreover, · 
we Cal). also estimate the trend values. 

2. It is readily comprehensible as compared to the 'method of least squares' or the 
'moving average method'. 

Limitations. This method assumes linear relationship between the plotted points -
which may not exist. Moreover, the limitations of arithmetic mean as an average also stand 
in its way. 

Example 2· 1. Fit a trend line to the following data by the method of semi-averages : 
Year Bank Clearances (Rs. Crores) Year Bank Clearances (Rs. Crores) 
1992 53 1999 87 
1993 79 2000 79 
1994 76 2001 104 
1995 66 2002 97 
1996 69 2003 92 ' 
1997 94 2004 101 
1998 105 

Solution. Here since n = 13 (odd), the two parts would consist of 1992 to 1997 and 1999 
to 2004, the year 1998 being omitted. 

X1 = Average sales for first part 
437 . 

= 6 = 72·83 (Rs. crores) 

X2 = Average sales for second part ill' a: 

120 

110 

100 

uJ 560 
~non = 6 = 93·33 {Rs. crores) 

80 
As \ xplained in Remark to § 2·4·2, g_ 70 -'- 'mii - . "' 

90 
0 

,l, ~ IJ X 2 will be plotted against 1st ~"'< 
July, 1994 and 1st July 2001 
; esp ectively, as given in f:ig. 2·1 50 

~I o· 
"' "' "' ..,. .,, 

"' "' "' 
I ' I 

"' .... C0 "' 0 "' "' .., 
8 "' "' "' "' 0 0 8 · 8 0 lil "' "' "' "' 

Joining the points A [1994, X1l 
fuel B [2001, Xii , we get the trend 
line [Fig. 2·1] . . Fig. 2.1 : Trend by tM Method of Semi-auerages 

I 
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4 3 Metho o urve Fitting by Pri . 
2' · · · th t 1 nciple of L quares is e mos popu ar and widely u d east Squares Th . . 

ea;t;ven set of data._The method yields very c~~e::~~od of_fitting math~ma~c~~!::! 
o form of the function to the fitted is obtained eith tts.if sufficiently good appr . al f 
h: values over t~me _or by a theoretical understan;[u Y a scrutiny of the graphical ~~ot ~f 
h ge An examination of the plotted data ofte of the mechanism of the . bl -haJl · d n provtdes an d vana e . on the typ_e of ~ren to use. Apart from the usual arit . a equate basis for deciding 
1P bly-loganthm1c scales may be used for the gra h' f°etic scales, semi-logarithmic or 
doU us types of curves that may be used to describe tph ic~ representation of the data The 
1,ano e given data in t· · 

(lf y, is th~ valu_e of the variable corresponding to time t) prac tee are: 
(i) A straight line : y1 = a + bt 
(ii) Second degree parabola : y 1 = a + bt + ct2 

(ii i) kth-degree polynomial : y 1 = a0 + a1t + a t2 + k . 2 .. . + ak t 
(iv) E;cponential curves: y1 =ab' 

=> log Yt = log a+ tl~g b :=A+ Bt, (say). 
(v) Second degree curve fitted to logarithms : 

Yt =ab 1 c1' 

=> log Yt = log a + t log b + t2 log c = A + B t + C t2, (say). 
(vi) Growth curves : 

(a) Yt =a+bc' (Modified Exponential Curve) 
(b) Yt = abc' (Gompertz curve) 

=> logy1 = log a + cf log b = A + Bc1 (say) 

(c) 
k 

Yt = 1 + exp (a + bt) (Logistic curve) 

Remark. For deciding about the type of trend to be fitted to a given set of data, the f?llowing 
points may be he! pful : ' · ' 

(i) When the time series is found to be increasing or decireasing by equal' absolute amounts, the 
straight line trend is used. In this case, the plotting of the 'data will give a straight line graph. 

(ii) The logarithmic straight line (exponential curve y1 = ab1) is used as an expression of the secular 
movement, when the series is increasing or decreasing by a constant percentage rather than a constant 
absolute amount. In this case, the data plotted on a semi-logarithmeic scale will give a straight line 
graph. 

(iii) Second degree curve fitted to logarithms may be tried for tre~d fitting if the data plotted on a 
semi-logarithmic scale is not a straight lone graph but shows curvature; being concave either upward 
or downward. 

Alternatively, approximations about the type of the curve to be fitted can be made by use of the 
following theorem based on finite differences : , 

"The nth differences t:;"yi, t:,• (log y
1
), t:,• (lly1) of any general polynomial y1 of nth degree in t is 

constant and (n + l)th differences are equal to zero." · · · 
For further guidelines, the following statistical tests based on the calculus of finite differences 

may be applied. · 
We know that for a polynomial y1 of nth degree in t, 

1:ir y 1 = constant, 
=0. r>n 
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. _ h being the interval of differencing and t,r 
~here A is the difference operator given by /J. Y, =Y, +h Y, ' Y, 
is the rth differences ofy,. 

1. If Ay, = constant use straight line trend. 
2• If A2y, = constan~, use a second degree (parabolic) trend· 
3. If ti. (logy 1) = constant use exponential trend curve. 

1 
'thms 

4. If A2 (log y 1) = constant use second degree curve fitted to ogartn nd. 
, , t· 1 Gompe z a Logistic curves can be 5. The growth curves, viz., modified exponen 18 ' 

app1roximated by the constancy of the ratios: 

tJ.y, { tJ. (logy,) } 
tJ.y,_l ' !J.(logy,: 1) 

respectively, for al\ possible values oft. 
The following tests may also be used : . 

1 6. If Ay, tends to decrease by a constant percentage, use modified expone~ti_a curve. 
7 'f • Go ertz curve or Logistic curve. • 1 u y, resembles a skewed frequency curve, use a mp 
Fitting of Straight Line by Least Squares Method. Let the s_traight line trend 

between the given time-series values (y1) and time t be given by the equation : 
Yt = a + bt . .. . (2·3) 

Principle of least squares consists in minimizing the sum of squares of the deviations 
between the given values of Yt and their estimates given by (2·3). In other words, we have to 
find a and b such that for given values of y 1 corresponding ton different values oft, 

E = L (y, - a - bt)2 
I 

is minimum. For a maxima or minima of E, for variations in a and b, we should have 
aE 
aa = 0 - 2L (y1 - a - bt) l 

LYt = na + bL t } aE 
ab ';' o = - 2L t (y, - a - bt) Lt,= aL t + bL t2 ' 

.. . (2-4) 

which are the normal equations for estimating a and b. 
The values of L Yt, Lt, L t2 are obtained from the given data and the equations (2·4) can 

now be solved for a and b. With these values of a and b, the line (2·3) gives the desired trend 
line. 

i ,•- • l 
Remark. The solution of normal equations (2·4) provides a minima of E. The proof is given below : 
The necessary and sufficient condition fo a minima of E for variations in a and b are : 

02E o2E 
oa2 oo ob a2S 

and (ii) A= a2E 02E > 0 and oa2 > 0 
. oE oE 

(i) iJa = O, ob = O .. · (*) ... (**) 

ob oa ob2 

From (2·4), we get 
02s a2s 02s o2E 
aa2 = 2n > 0 ; ob2 = 2I. t 2 > 0 ; aa ob = ob oa = 2 I,t 

A=12rr 2I,t I [ 2 2] 2 I,t 2 I,t2 = 4 nI. t - (I. t) 

[
I,t2 (I,t) 2

] = 4n2 -----;;-- -;- = 4n2 Var(t) > 0 

Hence·, the solution of the least square equations (2·4), satisfies(*) and(**) and, therefore, provides 
a minima of E. 
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fng of Second Degree (Parabolic) Trend Let the s d d fit 
1 

• econ egree parabolic trend 

C
.,,,;e be: \jJ • Yt =a + bt + ct2 

eding similarly as in the case of a straight line th ... (2·5) 
b ::: are given by : ' e normal equations for estimating 

O, 2.Jt=na +bI.t+cI,t2

1 
2. t Yt = a!, t + bl t2 + cI. t3 , 

2. t2 Yt = al t2 + bl t2 + cl t4 • • • (2·6) 

the sununation being taken over the values of the time series . . 

fitting of Exponential Curve : 
Yt =a bt .. . (2·7) 

logy1 = log a+ tlog b 
Y = A + Bt (say), y l A ... (2·7a) 

where . _= o_gYt , = log a , B = log b. . .. (2·7b) 
(2•7a) is a straight lme m t and Y and thus the normal equations for estimating A and B are 

I.Y = nA + BI. t, } 
I. tY = AI. t + BI. t2 ... (2·7c) 

These equations can be solved for A and B and finally on using (2·7b), we get 
a = antilog (A) ; b = antilog (B). 

Second Degree Curve Fitted to Logarithms. Suppose the trend curve is : 
Y

1 
= a bt ct' ... (2·8) 

Taking logarithms of both sides, we get 
log Yt = log a + t log b + t2 log c 

Y
1 

=A+Bt+Ct2 ••• (2•8a) 
where Y

1 
=logy, ; A=loga ; B=logb · and C=logc ... (2·8b) 

N?w, (2·8a) is a second degree parabolic curve in Y1 and t and can be fitted by the 
te~,J~mque already explained. We can finally obtain 

a = Antilog (A) ; b = Antilog (B) and c = Antilog (C). 
Ii With these values of a, b and c, the curve (2·8) becomes the best second degree curve 

tted to logarithms. , 

1 

R~mark. The method of curve fitting by the principle of least squares is used quite often in trend 
a~~ly~i~ particularly when one is interested in making projections for future times. Obviously, the 
: iabihty of the estimated (projected) values primarily depends upon the appropriatness of the_ form of 
the math~matical function fitted to the given data. If the function is determined on the ad-hoc basis by 
the scrutmy of the plotted values, the projections based on it may be valid for the near future while, if 
the st~dy of physical mechanism of the variable change forms the basis of the selection of function, then 
~re 18_very little likelihood that the function will change for sufficiently long period and hence in this 

e rehab le l t . . ong erm proJections can be made. 

Merits and Drawbacks of Trend fitting by the Principle of Least Squares. 
Merits Th d "d l d. fitt· • e method of least squares is the most popular an •Wl e Y use method of 

mg mathematical functions to a given set of observations. It has the following advantages : 
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1
A-,1s11 

. al analytical character, this method comp} ( 

1 
Because ofits mathematic toror personal bias on the part of the investi?tely eli1n,, 

· -- • ti judgemen gat ""'iat 
the elerpent of subJec_ v~ . averages [discussed in § 2·4·5], this meth or. ! 

2. Unlike the method ofmalloVIIlthg oiven time periods in the series. od enables 
th tr d values for e ,,. . Us 1 compute e en . be used to estimate or predict the values of the v . . 

3. The trend equation c~n th intermediate periods of the given series an8:abie for 
. d t in future or even in e . the fo an:, peno . . 1. ble reca, 

al 
re also quite re ia . . th nl I v ues a . the rinciple of least squares 1s e o y technique Whi 

4. The curve fitting bywth P r annum for yearly data, if linear trend is fitted ch enabJ 
t obtain the rate of gro pe ' . . . us o he method is quite tedious and time-consunung as compared . 
Drawb°:cks ht. Td'ffi ult for a non-mathematical person (layman) to understandWith otoer 

methods. It 1s rat er 1 c . . and . . f single new observation necessitates all calculation to Use. 
2 The addition o even a s bed 
. -afresh. , hi th d b d d. t' ons or forecasts based on t s me o are ase only on the I 

_3. _Fut~e tpre d1ca1nd completely ignore the cyclical, seasonal and irregular fluctuaontigk1JJJ 
vanatJon i.e., ren ons 

4 Th
' most serious limitation of this method is the determination of the type of thee. · 

• e 1· b 1· t - "eJii 
curve to be fitted, viz., whether we should fit a inear or a para o ic rend or some othEr 

more complicated trend curve. 
5. It cannot be used to fit growth curves like Modified Exponential curve, GompertzCU!'i 

and Logistic curve, to which most of the economic and business time series data conform e 

Example 2·2. In a certain. industry, 
Year Production Year Produc ; 

the production of a certain commodity 
('000 units) ('000 unit!!/ 

(in '000 units) during the years 1994- 1994 66·6 2000 93-21 

2004 is given in the adjoining table : 1995 84·9 2001 111-6 I 

(i) Graph the data. 1996 88·6 2002 88·3 

(ii) Obtain the least square line 1997 78·0 2003 mo 
fitting the data and construct the 1998 96·8 2004 11s-2 I 

I 
graph of the trend line. 1999 105·2 

(iii) Compute the trend values for the year 1994-2004 and estimate the production of 

commodity during the years 2005 and 2006, if the present trend continues. 
(iv) Eliminate the trend. 
_Solu~ion. Here n = 11, i.e., odd and, therefore, we shift the origin to the middletiJJi 

penod, viz., the year 1999. Let x = t- 1999 ... ill 

TABLE 2-1 : COMPUTATION OF TREND LINE 

I, 
Year "Production 

(t) ('000 !:nits) (y J X xy, x2 , 

\ 
I 

1994 66·6 -5 -333·0 25 
1995 8_f9 -4 -339·6 '16 
1996 88·6 -3 -265,8 
1997 7J.o -2 -156·0 

· l9 
4 

I -
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1998 96·8 -1 -96·8 1 
110·2 0 0 

91·54 

1999 0 

2000 93·2 1 93·2 1 

2001 111-6 2 223·2 4 

2002 88·3 3 264·9 9 

2003 117·0 4 468·0 16 

95·49 
.99·44 
103·39 
107·34 
111·29 

2004 115·2 5 576·0 25 115·24 

Total 1,050·4 0 434-1 110 

Let the least square line of Yt onx be : y1 =a+ bx (origin: July 1999) 
The normal equations for estimating a and b are · · 

... (2) 

2.Yt = na +b 2.x and 2.x.y1 =aLX +b2,x2 

1050 = lla 434-1 = 110b 

a = 10f t4 = 95·49 
434·1 b = 110 =3·95 

Yt = 95·49 + 3·95x, .. . (3) 
Hence, the least square line fitting the data is 

where origin is July 1999 and x unit= 1 year. 
Trend values for the years 1994 to 2004 are obtained on putting x = - 5, - 4, - 3, ... , 4, 5 

respectively in (3) and have been tabulated in the last column of the Table 2·1. 
Estimate for 2005. Talring x = 2005 in (1), we get x = 2005 - 1999 = 6 
Hence the estimate production of the commodity for :2005 is obtained on putting x = 6 in 

(***) and is given by : • / I 

( y,) 2005= 95.49 + 3.95 X 6 =' 119.19 ('000 units). 
1 

Similarly, ( y,) 2006 = 95·49 + 3·95 x 7 = 123· 14 ('000 units) 
_ ThJ graph of the original 

126 

i 116 
'i:: 106 
0 
0 e 96 
C i 86 
ll 76 £ 

66 
, , 

• ,, 
Original Data ,' ' -:-----..,, \ 

,,''.... I ... .. ,' 
, '' ,' .. 

\' 

data ap.d t!: trend line--i_s given 
in Fig. 2·2: 

Assumi g multiplicative 
model, the trend values are 
eliminated on dividing the given 
values (y1) by the corresponding 
trend values (y,). Howev,er, if1we 
assume the additive model, the , 
trend eliminated values are 
given by (y1 -y,). The resulting 

1 
values contain short-term 

\ (seasonal and cyclic) vatiati~ns 
g O g . 8\ \ and irregular variations. Trend 

• 

,.. ,.. ,.. ,.. - ,.. C\I C\I C\I , eliminated values ate given ip 
. Table 2·2. 

Fig. 2·2. 
1 

' 
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TABLE 2-2: ELIMINATION OF TREND 
81

A
1

1sr~ 
Trend Eliminated Values Based on. 

Year Additive Model Multiplicati~ 
(y, -y,) 

ode! 
(y, +y,) 

1994 66·6- 75-74 = -9·14 66·6/75·74 "'~ 

1995 84·9- 79-69 = 5·21 84-9n9-69 "' 1-os5 

1996 88·6- 83·64 = 4-96 1·059 

1997 78·0- 87-59 = -9·59 0·891 

1998 96·8- 91•54 = 5·26 1·057 

1999 110·2- 95·49 = 14·71 1·154 

2000 93·2- 99·44 = -6·24 0·937 

2001 111·6 - 103·39 = 8·21 1·079 

2002 88·3- 107·34 = - 19-04 0·823 

2003 117·0-111·29= 5.71 l-051 

2004 I 115·2 - 115·24 = -0-04 0·999 

Example 2·3. Fit a straight line trend by the method of lea,st squares to the following dii 
relating to the sales of a leading departmental store. Assuming that the same rate of cha fu 

continues, what would be predicted earnings for the year 2006 ? ng, 
Year 1997 1998 1999 2000 2001 2002 2003 200! 
Sales (Crores Rs.) : 76 80 130 144 138 120 174 190 

Solution. Here n = 8, i.e., even. Hence we shift the origin to the arithmetic mean ofllli 
two middle years, viz., 2000 and 2001. We define 

I . 
t -2 (2000 + 2001) t - 2000·5 2 4 O 

X= I = I = t- 0 1 
2 (Interval) 2 x 1 

... Ii 

where x values are in units of six months (half year). 
TABLE 2-3: COMPUTATION OF LINEAR TREND 

Year Sales (Crores Rs.) 
Trend values (Croresllsl 

(t) 
X xy, x2 y, = 131•5 + 7-33.t 

Yt 
·1997 76 -7 -532 49 80·19 

1998 80 -5 -400 25 
94-85 

1998 130 -3 -390 9 
109•51 

2000 144 -1 -144 1 
124·17 

2001 138 1 138 1 
138·83 

2002 120 3 360 9 
153•49 

2003 174 5 870 25 
168·15 

2004 190 7 1330 49 
182·81 

Total LYt = 1052 Ix=0 Ixy1 = Ix2 = 168 
1,232 

Let the linear trend equation between Yt and x be : 
Yt = a + bx, x = 2(t - 2000·5) 

Va 

su 
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. e 1 x = o, the normal equations for estimating a and b are . 
Sine - I Yt 1052 . 

a =-=--=131·5 b-LXYt 1232 
n 8 • - r_ x2 = = 7 .33 

the least square trend line becomes: Yt = _131·5 + 7.33x (
3
) Hence half . . .. 

b _ 7.33 units represent :yearly mcrease in the earnings · 
here - h ' · · 

The trend values for_t e year 1997 ½> 2004 can now be obtained from (3) on putting it x 
_ 7,- 5, ... , 5, 7 respectively, as shown m the last column of the above Table 2.3: · 

E ,;mate for 2006 : When t = 2006, we get from (1), x = 2(2006 -2000·5) 11 
SH ' ' 

Hence the predicted sales ~or 2006 are : Ye= 131·5 + 7·33 x 11 = 212·13 (Crores .Rs.) _ 
Example 2•4. Below are given the figures of produc,tior,. (in t~pusand tonnes) of a (ertilis~r 

tory: 
1995 1997 \ 1'998 1 1999 I 2000 J 2001' • ' ' 2004 

e!uction ( '000 tonnes) 77 · · 88 · · · 94 · -85 • 91 , 98 90 
(i) Fit a straight line by the 'Least Squares Method: tind tabulate the trend ·v~lues. _, _, 
(ii) Eliminate the trend, assuming additive model. What components of the time series are 

thus left over ? -
(iii) Whatis the monthly increase in the production ? • 
Solution. (i) 

TABLE 2-4: COMPUTATION OF TREND VALUES 

Production Trend values Year x2 ('000 tonnes) (t) (yJ X = t-1999 x:Yt 
Ye= 88·8 + 1·37.x 

77 -4 -308 16 183·32 
88 - 2 -176 4 86•,06 
94 -1 -94 1 87·43 
85 0 0 0 88·80 
91 1 91 .1 90·17 
98 2 196 4 91·54 
90 5 450 25 96·65 

623 1 159 51 622·97 

Let the trend equation' be Yt =a+ bx, [origin: July 1999] 
Normal equations for estimating a and b are 

LYt= na+blx} { 623=7a+b 
b~ 2 => 159 = ·a + 51b 

kXy1 =a""x+ ""x . _ 

Elimination of Trend 

-6·32 , 
+ .1·94 

· +6·57 
-3·80 
+ 0·83 
+' 6•46 
-5·65 

I 

Solving for a and b, we uet : = 88·80 and b, = 1.37 , · 
. ,;, '88 8 · 1 37x. X - -t -;_ 1999 ... (*) · · Trend equation is : Yt = · + · ' - · d 
ubstituting the value~ of i, viz. i _. 4, - 2, etc. successively; we get the required tren 
8 

as shown in the last but1 on~ c;olumn o{ Table 2 ·4· , ·· l - 1· · t d by 
ii) As . · . / · ' ·. . .: . the' trend va ues are e rmma e 
act· summg ad,ditive :~odel .for th~ ti,me senes: the l1;tst column of Table 2·4. The: 

ing them from the_ v~.lpes, a~ shown lil 
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resulting Values give·the short-term fluctuations which change with a period of more t'h-. one year. "'<>!l 

is 'b~i~i) Yearly increase in the production of fertiliser, as provided by linear trend y
1 

=a+ b 
- l-37 thousand tonnes. , x 

Monthly increase in production = \;7 = 0· 114 thousand tonnes. 
Exanaple 2.5 Fi · . • 1 r 

squares and ob . · t a straight line trend to the followmg data by the method of least 
Y-ear tain two monthly trend values for Nov. 2000 and Sept. 2001. 
.Averag ,1 : 1996 1997 1998 1999 2000 2001 2002 2003 2on~ e ,r~onthly v-. 
Profit (crore8 Rs.) 

12-6 14-8 18·6 14·8 16-6 21·2 18-0 Solution. Let th tr . 
e s lllght ijne trend of y, on x be given by : 

Th Y, = a + bx, Where the origin is July 2000 and x unit= 1 year. 
e normal equations for estuµating a and b in (1) are : , 

Ly,= n.a + b l:x and I,xy, =aI.x + bI.x2 

Y-ear TABLE 2 5 FITT S R HT LINE TREND : ING T AIG 

17-4 15-8 

• . . (1) 

I ••• (2) 

Average monthly X 
Trend values (crorf!s Rs.) (t) =t-2000 Profit (in crores Rs.) x2 xy, Y, = 16·64 + 0-48x (y,) 

1996 -4 12·6 16 -50·4 14·92 , 1997 -3 14·8 9 -44-4 15-35 1998 -2 18·6 4 -37-2 ' 15-78 1999 -1 14·8 1 -14·8 16-21 2000 0 16·6 0 0 1.6-64 2001 1 21·2 1 21-2 17-07 2002 2 18·0 4 36-0 1-7-50 2003 3 1'7-4 , · - 9 52·2 ·17-93 2004 4 15·8 16 63-2 18·36 0 
60 25·8 L 

Total 9 149·8 
' 

j Substitutmg the values m (2), we get 
. 149·8 = a(9) + b(O) 

'and 25·8 = a(O) + b(60) 
=> a = (149•8/9) = 16•64 I 

=> b = (25·8/60) = 0·43 
.·. The trend equation is : [From (1)) 

· ' y = 16·64 + 0·43x ; (Origin : July 2000, x unit= 1 year) 
t h ·t f . 12 months the Since y represent the monthly average fo~ each_ year an~ t e um o x _18 month. S~ the 

trend of monthly •average increas~s by 0·43 m 12 months, i-~-• (0·43/12) per 
trend equation for monthly valµ,es 18 : • (SJ 

, \ 0·43 => Yt = 16·64 + 0·036x ···. Yt == 16·6~:f:-ii"" X 
(origfo : ls_t July 2000, x unit= 1 month). 
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~-d to make this equation useful for estimating month! tr d al th • • · 
In o;a-e~ to the middle of a month. Since July 2000 is select:d en _v. ues, d e o~gm ;s 

to be shii•e 1·cnn half a month later, x sho.1-dd be replaced by x +as(lo/n2gi) nTh, antr·we ., ave od •ft the or o-- . . . . . e ans,orme 
shl , .. 1 trend equation 1s. · _ . 

I lllonu"Y ( I ) . Yt = 16·64 + 0·036 x + 2 Yt = 16·658 + 0·036 x 

[(origin : 15 July 2000 ; unit of x = 1 month ; unit of y1 = Monthly (crores Rs.)] 

j\loW we find the t~end values, Nove~ber 200~, and September 1999. Since, Nov. 2000 
: 4 months, (i.e., 4 umts) ahead oogm, putting x = 4 m the trend equation (3) : 

· 15 (y,) Nou. 2000 = 16·658 + 0·036 X 4::::;, 16·802) (crores Rs.) 
Si~ilarlY, Sept. 1999 is 10 months behind the origin, putting; = - 10, we have (in 3) : 

(y,)s,pt. 1999 = 16·658 + 0·036 (- 10) = 16·298 (crores Rs.) 
Example 2•6. The following figures are the production data of a certain factory 

manufacturing air-conditioners : . • · 
Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000_ 

Production 
rooo units) 17 20 19 26 24 40 35 55 51 74 79 

Fit the second degree parabolic trend curve to the above data and obtain the trend values. 
Solution. Let the second degree parabolic tend curve be : 
y
1 
= a + bx + x2, where x = t - 1995 ... · (*) 

TABLE 2·6: COMPUTATION OF PARABOLIC TREND VALUES 

' Year Production 
(t) ( '000 units) x = t-1995 

(yJ_ 
' 1990 

1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 

~000 

Total 

17 
20 
19 
26 
24 
40 
35 
55 
51 
74 
79 

440 

-5 
-4 
-3 
-2 
-1 

0 
1 
2 
3 
4 
5 

x2 x4 xy 

25 - 125 625 - 85 425 
16 -64 256 -80 320 
9 -27 81 -57 171 
4 : - 8 

1 
16 l ' I - 52 104 

1 -1 1 -24 24 
0 0 0 0 0 . 
1 1 1 35 35 
4 8 16 110 220 
9 27 81 153 459 

16 64 256 296 1184 
25 125 625 395 1975 

Ix2 Ix3 = 0 Ix4 LXY Ix2y 

Trend Values 
y, =34 + 6.28x 

+0•6x2 

17·60 
18·48 .. 
20:56 
23·90 
28·32 
34·00 
40·88 
48·96 
58·24 
~8-72 
80·40 

- - 110 = 1,958 = 691 = 4,917 _ / --=-..,__ _ __J ___ ..L.::...:.:.::J_ _ _L__.:.:.:..:..::.....J._--1--'---:--'----_.J/ . 

The normal'equations for estimating a, band c in(*) are : 
LY1==na+b1:x+cix2 1. l 440 ~lla+llOc 

L7Y1==a!x+btx2+ ·c,Ix3 691=110b 
Ix2Y1 == atxz+ btx:i + cfx4 :_.· 4 917 ;::zll0 a+ 1,958 c 

"P'ro' · · ·' ·' ' · 
m (2), we get b = (691/110~ = 6·28. 

) ' ' 

... (1) 

... (2) 

... (3) 
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0 d then subtracting from (3), we get 
Multiplying (1) by4410 anlO - (110a + 1,958c) - (ll0a + 1,100c) 4917- X -

, 517=858c => c=0·60. 

440- llOc _ 440- 110 x 0·60 374 Substituting in (1), we get a - 11 - 11 = u = 34 
Substitutin the values of a, b and c in (**), we get the required trend equation a . 

g Yt = 34 + 6·28 X + 0·06 x2 ; X = t - 1995 , S • 

The trend values Ye can be computed on putting x = - ?• - 4, - 1, 0, 1, .. . , 
4

, 
5 

in(•/ (••i 
are given in the last column of the Table. 2 ·6 ) ¾d 

Example 2•7. You are given the population figures of India as follows : 
Census year (x) 1911 1921 1931 1941 1951 196l j

971 Population (in cror~s) 25·0 25·1 27•9 31·9 36·1 43.9 
54

_

7 Fit an exponential trend y = ab" to the above data by the method of least squares d 
the trend values. Estimate the population in 1981, 2001 and 2011 an fi.nd 

Solution. Taking logarithm of both sides of the equationy =ab x, we get 
logy = log a + x log b => u = A + Bx ( h 

- ,., ... 1) w , ~rev= logy, A= log a and B = log b. Now (1) represents a linear trend between v and 
. T};\e ¥ithmetic for fitting the linear trend (1) to the given dat;:i. can be reduced to a gr\ 

extent-if we shift the origin in x to 1941 and change the scale by defming a new v'an~ble ue~ follows: 

u = [(x - 1941) / 10], so that I. u = 0 
11 

Thus the linear trend u = A + Bu between u and u is equivalent to the exponential trend 
y = ab u, [(u = (x - 1941) / 10] ' .•. ((2)] 

where A = log a and B = log b. . . 
By the_ Principle of least squares, the normal equations for estimating A .and B in (2) are given by: -

Lu =nA+B~µ 
Since L u = 0, these equations give and I.uu = AI. u + BI, u2 

lt 

LU LU 
A = = 7 B i: Luv, 

-I,u2 

On using -(3), we get 
A = 10-~850 = ;·5264 

a = Antilog A ;; 33·60 
B - 1·6178 = 0·0577 - 18 

b = Antilog B = 1·142 

Year 
(x) 

TABLE 2-7: FITTING OF EXPONENTIAL TRENi 
Population 
(in crores) 

(y,) 
X -1941 u=-1-0- v = logy ' u2 

I . 
UV 

(3) 

9 -4·1937 1911 25·0 - 3 1·3979 4 -2-7994 
1921 25·1 - 2 1·3997 l -1-4456 
1931 27·9 -1 1·4456 0 O 
1941 31·9 0 1·5038 l 1-5575 
1951 36·1 1 1·5575 

4 
3-2850 

1961 43.9 2 1·6425 
9 

5_::.:.:.._•2140 
1971 54.7 3 1-135o 1-6178 
T tal o 10·6850 28 ·s. 

o , ·@d-1--· ) h ential trend fitted to the giv Substituting the values of a and b m (2 , t e expon , 
y = 33·60 (1 · 142)(:t - 1941/l0) -



A
L ySIS OF TIME SERIES 

'fo obta in the trend values y for 
different x, we use the linear trend (**), 

v ==A+ u = 1·5264 + 0·0577u 
Substituting the appropriate values 

of u from - 3, to 3 in the above 
uations, we get the corresponding 

:~tucs of u and finally the trend values 
are obtained from the fact that 

y u ==logy Y = Antilog (u), 

88 shown in the Table 2·8: 
Hence, on assuming the exponential 

&end y ab', the estimated population 
for 1981, 2001 and 2011 is 57· 18 crores, 
74,57 crores and 85· 17 crores 
respectively. 

j 

2-19 
TABLE 2,8 . COMPU TATION OF EXPONENTIAL TREND 
Year u 0·0577 u u • 1·5264 Trend Value, 
1911 

+ 0·0577u Y, • Antilog (u) -3 -0·1731 
1921 1·8583 22·56 -2 - 0·1154 
1931 1-4160 25·76 -1 -0·0577 
1941 1-4687 29·43 0 0 1-5264 
1951 1 

33.50 
0·0577 1·5841 

1961 2 0·1154 
38·38 

1·6418 
1971 3 0·1731 

43·83 
1·6995 50·06 1981 4 0·2308 1-7572 67-18 

2001 6 0·3462 1·8726 74-57 
2011 7 0·4039 1·9308 85·17 

2-4•4, Growth Curves and Their Fitting. The venous owth cu . . 
exponential, Gompertz and Logistic curves as <riven in (v") §gr2 4 3 rveS, viz. the modified 

· · 1 fl t 8 . . .,. ' · · cannot be determined· by 
thehprm~1p e ot efasd tsqularetsh. ~ec1al ~chmques have been devised for fitting these curves 
to t e gwen se o a a. n e 101lowmg sections we shall d' th · • fitting in detail. iscuss ese curves and their 

Modi_fied Exl!on_ential Curve and its Fitting. As already pointed out modified 
exponential curve 1s given_ by . y1 =a+ be 1, a> o; ... (2·9) 
where y1 represents the time senes value at the time t and a, b, c are constants, called its 
parameters . 

Taking first difference of (2·9), we get 
6.y, =Yt+h-Yt =be' (ch- 1) 

where 'h' is the interval of differencing. 
Similarly 

6.Yt-h =Y,-Yt-h_=bcl !.. h(ch-1) 
6.y, h :. -- = c , a co~ant. 

6.y, -h 
Thus , the most striking feature f the modified exponential curve is that the first 

differences of the consecutive value of y 1 corresponding to equivalent values oft change by a 
constant ratio. This implies that the first differences of y1 when plotted on a semi-logarthmi& 
graph paper, lie on a straight line. It may be pointed out that in (2·9), the constant 'a' is 
always positive and y 1 = a is the only asymptote of the curve. 

We discuss below two methods of fitting modified exponential curve., 
1. Method of Three Selected Points. We take three ordinates Y1, Y2, Ya , (say), 

corresponding to three equidistant values oft, (say) t1, t2 and t3 respectively such that 

t2 - t 1 = t3 - t2 
Substituting the values oft = ti, t2 and t3 in (2·9), we get respectively 

y
1 
= a + b c t, , y2 = a + b c t, , Ys = a + b c ta 

Y2 -Yi= b(ct• - ct•)= bet• (ct• -t, - 1) 

... (2-10) 
... (2·10a) 
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SlAl and y3 - Y2 = b(e'• - e'•) = be'• (e'• -1, - 1) l~ lts 
Dividing, we get 

Y e = [
y3-Y2]1/(t,-t,J ·· ·(2·10,

1 y3- 2=e1,-11 _ [ o 
Y2-Y1 Y2-Y1 ·. • t2-t1.,t3 _t

2
] 

Substituting the value of e in (2· lOa), we get · · (2.
111 

_ =b [y3-Y2]''/(t,-t,l[y3-Y2_ 1 ] b= <YrY1)2 [~]t, t'(i,_
1 Yz Yi Y2-Y1 Y2-Y1 Ya-2Y2+Y1 Y3-y ,) 

- 2 ( 
Substituting for band e in (2·10), we get " 2-11Q) 

b t, _ <Y2-Y1)2 _ Y1Ya -y22 
a = Yl - e - Yl - Ya - 2y2 + Y1 - Ya - 2yz + y1 

Substituting for a, b and e from (2· 11), (2· lla) and (2· llb) in (2·9) We t ... (2-11i1 
the modified exponential curve fitted to the given time-series data· y; y ge bt~e equatio 

din tothr l t d · ts ' ' 2,Y3 elllg no1 of the free hand curve correspon g ee se ec e pom t = ti, t2 and t ordina~ 
2. Method of Partial Sums. The given time-series data are split . t 

parts each cQntaining, (say) n consecutive values of Yt correspoding to t = 1 2 in ° three equij 
n + 2, ... , 2n; and t = 2n + 1, 2n + 2, ... , 3n. Let Si, S2 and Sa represent the•p~;1: ; t =n +1, 
three parts respectively so that lllnsof~, 

n 2n Sn 

S1 = L y,, S2 = L Yi, S3 = L Yt 
I = 1 I= n + l, I = 2n + l "• (2•12) 

Substituting for y 1 from (2·9), we get 

S1 = I (a+bd)=na+b(e+e2 + .. . +e")=na+be ---n · (e" 1) 
l=I· e-1 

Similaf°ly, we shall get S2=na+ben+l (e"-1) 
e-1 

and Sa= na + be2c+l (
e"- 1) 
e-1 

.. . (2·13 

.. . (2-1:l, 

.. . (2·13o 

Subtra~ting (2· 13) from (2· 13a) and (2· 13a) frdm (2· 13b) , we get respectively 
(c"-1) 2 

S 2 -S1 =be (e-l) ... (2-11' 

(c!'- 1)2 - arid . S3 - S 2 = ben+l--- .. . (2•1M• 
(e -1) 

Dividing (2· 14a) by (2· 14), we have 
Sa-S2 
S2-S1 =en => 

Substituting fore" in (2· 14), we get 

e = (S3- S2)
11

" 
S2-S1 

be [S3:.... S2 ]2 
S 2-S1 =e-1 S2-S1-l 

b (e-l)(S2-S1>3 
- e(S3-2S2+S1) 

Finally, substituting the values of b and e in (2· 13), we get 

a =¾[s1-e~\ (e"-l}]=¾[s1 (Sa(~~;:!);1) 2(e"-1)] 

... (2-li 

, · I 
[frol!l (Z·l'' 



Fitting of Grompe~t Curve. Grompertz curve is given by the equation 
Yt = abet 

here y, is th~,tiine series value at time t and a, b, c are its parameters. 
, log Y1 =; log a + log b. c 1 

i.e., Y, =A+ B ct, 
where Y,=Iogy,, A =loga and B=logb. 

. .. (2-16) 

... (2·16a) 

(2· 16a) is the equation of a modified exponential curve and the constants A, B and c can 
estimated by the method of three selected points or by the method of Partial Sums as 

plained above. Finally, the constants of the Grompertz·curve are given by 
a = antilog A and b = antilog B. 

Logistic Curve. This is a particular form of complex types of growth curve. A symmetric 
gistic curve, also known as Pearl-Reed curve is given by : 

k 
Y -y ------ b <0 (2·17) 

- 1 - 1 + exp (a + bt) ' · · · 

ere a, band k are constants andy1 is the value of the time series' at the timet. 
k k 

llT) canalso be written as : Yt = 1 +ea. ebt = 1 +cebt , b. < 0 ... (2·17a) 

Also from (2· 17), we have 

1 1[ ] 1 1 ;,=-,; l+ea+bt =-,;+-,;.ea.ebt=A+Bc', ... (2·17b) 

1 1 
!re A=-,;, B=-,; ea,c=eb,areconst\lA,t\!r 'ni't·': r ·, 

Thus, the reciprocal of y1 follows modified exponential law. Hence, the given time series 
!TVations y1 will follow Logistic law if their reciprocal 1 / y1 follows modified exponential 

i\ccordingly the fist differences ~(1/y1) change by a ,constant ratio:;In other words, ~e. 
• differences of the receiprocals of the given observations wbet>.1 plotted on a senn-
rithmic graph paper, will exhibit a straight line. 
rJerivation of (2•17). The exponential straight line 

logy, =A1 +B1.t y=y1=ab 1 

rimple form of the growth curve called the simple exponential. This form gives: 
dy dt = ab1 log b =y log b = cxy (say), 

ate of growth of y per unit of time is directly proportional toy. But in pr~ctice this rate 
>wth cannot be in the same proportion always. It will continue upto certain level, called 
vet of saturation, after which it starts declining. · · 
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A11~ ~-
dy =ay(~-y);a>0, ~>0 
dt hih" ( 

th mentum factor w c mcreases with ti,-.. ·•. 2.1, · · called e mo . -,e t •1 
Th~ ~actor Y is he retarding factor which decreases with time. 'When llnd the! 

(~ - y) is known a\!e saturation level ~' the rate of growth tends to zero the Proce:¾ 
growth approaches . 11 d Robertson's Law. We shall now solve (2·1B) · The p,.;, 111 
d . t d by (2·18) 1s ca e . as a ~,h· stc111 ~e -~ equation in Y and t · Ii~ 

We have 

_l!:L_=adt 
y(~-y) 

1 [ 1 1 l - - + -- dy = a dt 
y ~-y 

Integrating, we get 

I ( Y ) _ a;Rt + y where yis the constant of integration. og ~-y -:- I' , 

_~Y- =exp(a~t+y):eallt . eY ~-y=oye-<t 
~-y 

or y = 1 + o e -u ' E > O .. . (2·Ji1 

where Ii= e-"I and e =a~> 0. The equation (2·19) is of the same form as (2·17a). 
Also from (2·19), we have 

1 1 o y = j3,+ j3e -<t =A1.+ B1 cl ... (2·!~1 

whereA1 = ½, B 1 =i and c1 = e -<, which is of the form (2·17b). 

Properties of Logistic Curve. Logistic curve satisfies Robertson's Jaw (2-H, 
Differentiating (2·18) w.r.t. t, we get 

and 

d2y [ dy dyl dy dt2 =.a (~-y),dt-ydt =a(~- 2Y)dt 

= a;2 y (~ -y) (~ - 2y) 

!~ > 0 if and only if - 2y > 0 

d2y 'f dt2 < 0 1 and only if~ - 2y < o y > ft 
2 

Thus, the logistic curve (2· 19) has an increasing rate for y < ~-/ 2 and it has a decJini;; rate for y > I 2. Moreover 
d2y 
dt2 = 0, at y = I 2 

. This_ im~lies that the logistic curve (2· 19) has a point of inflexion at y I 2· Tht:i 
inflexion is the critical point wherefrom the increasing rate of the curve starts Ip 
e may also observe that the line y = is an asymptote to the curve since lim Y • · 1111.__ . ,--
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hape of the curve is thus an elongated S as Y, 
,rhes 

in Fig. 2·3: 
sb0'vn utput of many industries display the same 

Theo h . d try . . of trend. When t e 11?- us c?mes mto being, 
!,J!ld hnical methods of production are not yet 
tJie tee tly formed. The production costs are high 
suffici~n market demand is still small and so 

2-23 

Logistic Curve 

1 
and t ton develops slowly. Next, production grows 1312 
produc_ 1 creasing rate as a result of perfection of o ..._ ____ i._ _____ .i__ 1 
t an in d h t ·t · a fi turing metho , t e ransi ion to mass Fig. 2•8 

manu ac . . k I . d tion and the increasing mar et. n turn, there 1s a period of saturation of the market 
pro ~:arlY everyone who could afford the given commodity already owns it) and accordingly 
(,.e.,_ rease in output becomes slower and slower and in the end almost stops altogether. 
the JJIC t t 1 1 ffi . . output is stabilised at a cons an eve su c1ent Just to replace the goods used up. 

Remarks 1. The Logistic curve (2· 17) can also be written as follows : 
L 

Yi -1 + exp [a(l3-t)]' 
.. . (2·21) 

where L, a and are constants. This curve is concave upward for t < and convex upward for t > ~-
The point of inflexion is at t = where the ordinate y1 is L/2. The curve thus looks like an elongated 

IetterS. Unlike the modified exponential curve which has only one asymptote, the Logistic curve has two 
asymptotes at the two ends. y = L and Y = 0 are the upper and lower asymptotes to the Logistic curve 

(2-21): 
2. For the Logistic curve (2· 16), i.e., 

k Y = Yr = 1 + e a-icl , b < 0 , · · · (*) 

the rate of growth is given by 
- k b e"+bl - b (_}L_) (-1-) ea+bt dt = (1 + e"+b1)2 • • - - 1 + e a-icl 1 + e a-icl • 

Thus, y has an extremum at ~-0 dt -
y=O or y=k 

In other words, k =max(y1) 

<b. [~ ( .Y.) .Y. ~1-- Q! ( -~) dt 2 = - b dt l - k - k · dt - b dt l k 

For point of inflexion, we have tb. dt2 = O 

Thus, (2·16) has point ofinfle1on at the time ~such that 

! = 1 + : a+bt e a-tel = 1 a + bt = 0 
t = -alb 

In view of (2·22a); Logistic curve (2· 16) may be written as : 
k . . (y) y1 = 1 + ea-ici ; b<O,k =max 1 

[From(*)] 

... (2·22a) 

... (2·22b) 

.. . (2·23) 

... (2·24) 
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2•24 FUNDAMENTALS OF APPL11: 

Fitting of Logistic CurV•• Let us now consider the fitting of th D s,~~, 
As already pointed out, the principle of le"st:squares cannot be app~ Lom.t.c '' 
curve (2•24) to the given ~et of data. We discuss below various ed to ijt ~•ii 
Logistic curve (2•24) to the given data. methods Of he t., _i 

d P 
' t Th · · fit1-;_ ~

8 

1. Method of Three Selecte oin s. e given time-series d t . ''Ilg t 
g,caph paper and a trend line is drawn by the freehand method. Thre a a •~ first Pl 
now taken from the trend line corresponding to selected equidistant e ~lea> "'1';, 
t = t, and t = t, respectively such that t, - t, = t, - t,. The sum or a!'°"'"' Of thn:• '• >,,: 
neighbouring values can also be taken with advantage. Values mu"':"' Ofni

0
,'

88

11, 
papulation data, geometric mean may be used. s be equi,j;:,tho,, , 

Substituting the values oft = t,. t, and t, in (2•24), we get respective! "''· 1 
k k y 

Yi=--- , Y2=---- y - k 1 + e a+bt1 1 + e a+bt2 ' 3 - 1 + e a+bts 

=> a+ bt1 = loge (:
1 

- 1) ; a+ bt2 = loge (:2 - 1) ; a + bt3 = loge ~ 3 _ 1 )} 

=> b(t2-ti)=log [~!?~=!] and b(t3-t2)=log[(k/y3)-l]} Y1 (k I Y-» - 1 

Since the points are equidistant, i.e., t2 - ti = t3 - t2, we get 

g (k I Y1) - 1 - log (k I Y2) - 1 => Y3 - 1 Y1 - 1 )= ( !_ _ l r lo [(k/y2)-l]- [(k/y3)-1] (k ) (k 
=> Y22 (k - Ya) (k - Yi) = YtYik -y2) 2 => Y22 [k2 - k(yi + y3) + ] = y: => k2 (y 2 Y:LY3 YlYa (k + Y2

2
-2y, 

2 - Yi y3) = k &,22 (yl + y3) - 2yi Y2 y3] . 

Since k -:1= 0, k = Y22 (y1 + Ya) - 2Yi Y2 Y3 
Y22-Y1Y3 

"' (2·26 

From (**) and (*), we get respectively 

b ·=_l_lo [(k-y2)Y1] t - , "'1~1 , k-t2 - t1 ge (k - y
1
) y

2 
• · • (2·26a) and a = loge (---11) .... bt1 , .. (2·261 

E l -xamp e 2•8, Given the three select d . and t
3 

= 58 as follows: _ e points Yi, Y2 and y3 corresponding to t1 = 2, 12= 31 

- t1 = 2, Yl = 55·8 · t - 30 Fit the Logistic curve b th ' 2 - , Y2 = 138·6 ; t3 = 58 ; Ya= 251·8 
t = 5, 18, 25, 35, 46, 50, 5

4
, lo, J/'';tod of sekcted points. Also obtain the ..,.d .,1.,P 

Solution. Let the equation of the lo . ti k ,,.1'1 gis • c curve be : 
Then using (2·26), (2·26a) and (2·26b) t Yt = 1 + e a+bt 

2 
, we ge 

k Y2 (yl + y3) - 2y 2 1 = 
2 

1 Y2 Y3 _ 3987987·70 - 2348005•97 1639981•7 ::: 152· 
y 2 -Yi Ya - 19209·96 - 84 70·44 = 

b = flog e {Yi (k - Y2) } ] ~1 _ [ { 786·78 } ] _!,_ Y2 (k - Y1) t2 - ti = log10 13430_34 x loge 10 28 



ALySIS OF TIME SERIES 2•25 

= (2·8958 - 4· 1280)" ~-3026 _ . . 28 - - 0·1013 

And a = log., ~1 - 1 )- bt1=(log101·7365) 2·3026 + 0·202~ 

= 0•2396 X 2•3026 + 0·2026 = o:7543 

Hence the required (fitted) equation of the Logisti~ curve is . 152·7 
· Yt = 1 + e·7543 - -10131 

Trend Values. In(*), let us take 
ea+bt = µ log b •µ=a + t log.,µ= 0·7543 - 0· 1013t 

1 
log, µ Jog,· µ 0 754. Now og10µ = -- = -- _ · 3-0·1013t 
log, 10 2·3026 - 2·3026 

Finally, the trend values y1 are given by: y _ k _ _ k_ d . . 1 1 + e a+bt - 1 + µ ' an are obtamed in the 
st column of Table 2 ·9. 

TABLE 2-9: COMPUTATION OF TREND VALUES BY LOGISTIC CU V A E 
Period log, µ = 0·7543 - O· 1013t (2) µ = Antilog ((3)) k 

t 
log 10µ = 2·3026 y,=--

1+µ 

(1) (2) (3) (4) (5) 

5 0·2478 0·1076 1·2810 66·944 

18 -1-0691 - 0·4640 = 1-5367 0·3434 113·667 

25 -1-7782 - 0·7722 = 1-2278 0·1690 130·624 

35 -2·7912 - 1·2122 = 2·7878 0·0613 143·880 

46 -3·9055 -1·6961 = 2·3039 0·0201 149·691 

50 -4·3107 - 1·8721 = 2-1279 0·0134 150·681 

54 -4·7195 - 2·0481 :, 3·9519 · 0·0089 151·353 

60 -5·3237 - 2·3120 = 3·6880 r , r .I _0\p~49 [ 151·955 

' 
.,. ,.... ,..,,_ ..... _. 

66 -5·9315 - 2·5760 = 3·4240 0·0027 152·289 

70 -6·3367 - 2·7520-=-3·2480 0·0018 152·426 

2. Yule's Method. Let us suppose that the value of k is ~pproximately known or obtained 
other methods. Then the logistic curve (2·~4) contains two parameters a and b, and two 
fables t and y

1
• Hence the principle ofleast squares can be used to estimate a and b. We 

re from (2·24), 

a + bt =•log ·~ - 1 ) or v = a + bt ... (2·27) 

~rev= log (k / y - I). (2•27) representira linear trend between v and t, and according to the 
1ciple of least squares, the normal equations for estimating a and b are : 

I.v=na+bI.t and I,tv=aI.t+bI.t2 

3. Hotelling's Method. A very elegant and ingeneous method for fitting a Logistic curve 

lVen by Hotelling. We have [c.f (2·22)) 
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