

Semester II

CHE-RC/HG-2016 :CHEMISTRY2

Section A:

Topic: Transition elements (3d series)

Transition Elements

Ionization energy and electron affinity

Atomic radius

Atomic radius

Ionization energy and electron affinity

57 La Lanthanum	58 Ce Cerium	59 Pr Praseodymium	60 Nd Neodymium	61 Pm Promethium	62 Sm Samarium	63 Eu Europium	64 Gd Gadolinium	65 Tb Terbium	66 Dy Dysprosium	67 Ho Holmium	68 Er Erbium	69 Tm Thulium	70 Yb Ytterbium	71 Lu Lutetium
89 Ac Actinium	90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm Curium	97 Bk Berkelium	98 Cf Californium	99 Es Einsteinium	100 Fm Fermium	101 Md Mendelevium	102 No Nobelium	103 Lr Lawrencium

Alkali Metal

Alkaline Earth

Basic Metal

Semi-metal

Non-metals

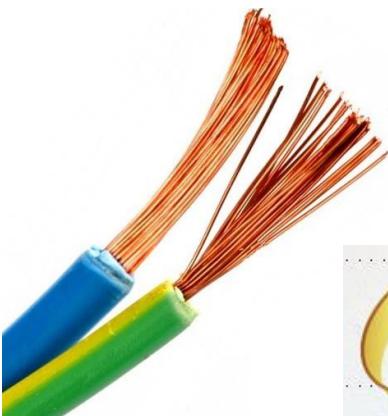
Halogen

Noble Gas

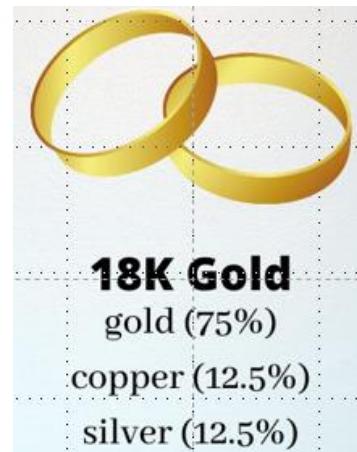
Lanthanide

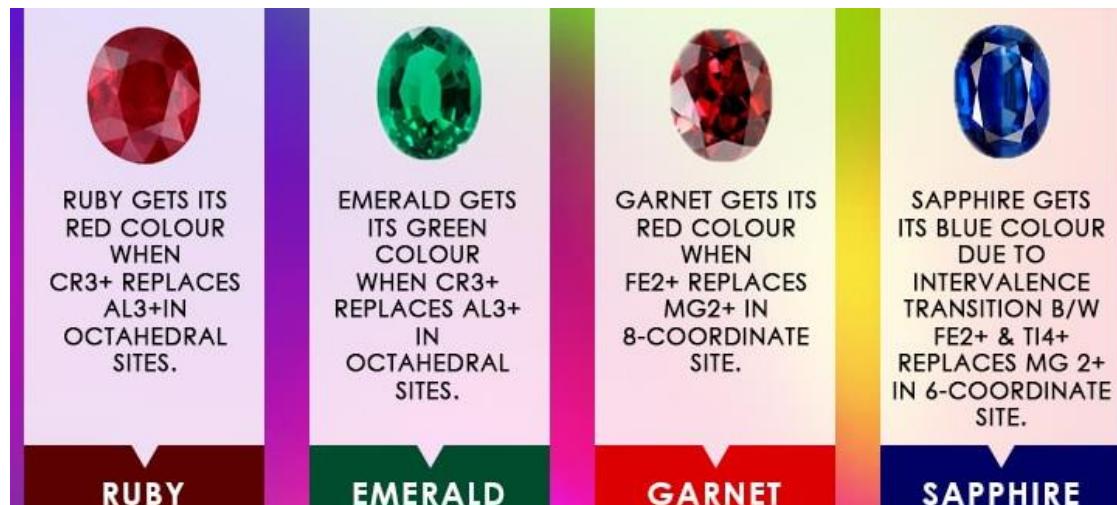
Actinide

Transition Metal


Modern Techniques and Theories

- **Transition elements** are placed in between the s-block and p-block elements in the periodic table.
- Their properties are transitional between the highly reactive metallic elements of the s-block, which typically form ionic compounds, and the elements of the p-block, which are largely covalent.
- The IUPAC definition of a transition element is that it is an element that has an **incomplete d subshell** in either the neutral atom or its ions.
- **Group 12 (Zn, Cd, Hg) has a d¹⁰ configuration** and since the d shell is complete, compounds of these elements *are not regarded as transition elements*.
- All the transition elements are metals.
- They are therefore good conductors of electricity and heat, have a metallic lustre and are hard, strong and ductile.
- They also form alloys with other metals.


Transition Elements


Metallic state of 3d elements

Cu wire

Alloy

Chemistry of colours in gemstones

Transition Elements

Group	3	4	5	6	7	8	9	10	11	12
	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	
Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	
Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	
La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	
Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	
Ac										
Actinium										

Industry	Jewelry Investment Electronics Dental Glass/China	Solar Electronics Investment Jewelry Chemistry	Automotive Jewelry Glass Chemistry Investment	Automotive Electronic Dental / Alloys	Automotive Electro- chemistry Electronics Chemistry	Automotive Chemistry Glass Jewelry	Electrochemistry Electronics Chemistry
	GOLD	SILVER	PLATINUM	PALLADIUM	IRIDIUM	RHODIUM	RUTHENIUM
Application	Jewelry Bars/Coins Bonding wires Dental alloys Decorative colors	Conductive pastes Electrical contacts Bars/Coins Jewelry Catalysts	Catalysts Sensors Gauzes Glass Fiber Bushings Silicones Bars/Coins Chemotherapy	Catalysts Bars/Coins	Spark plugs Crucibles Catalysts Semiconductors Anode coating	Catalysts Alloys	Harddrive Anode coating Catalysts

Focus of Discussion

- ✓ Electronic configuration
- ✓ Variable oxidation state
- ✓ Colour
- ✓ Magnetic properties
- ✓ Catalytic properties
- ✓ Ability to form complexes

Transition Elements

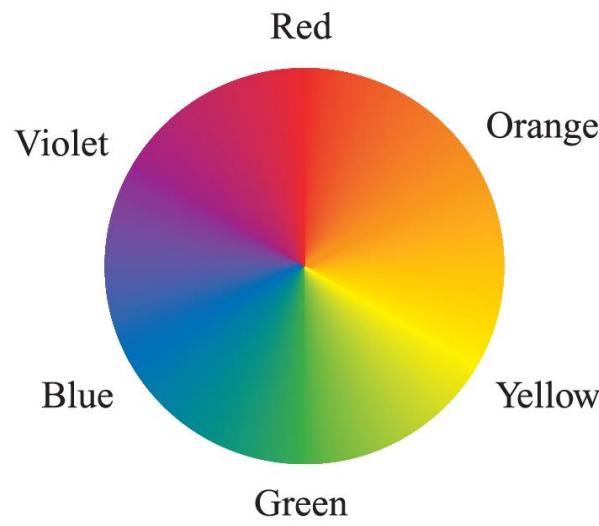
Electronic configuration

Atomic number	Element	Ground state electronic configuration
21	Sc	$[\text{Ar}]4s^2 3d^1$
22	Ti	$[\text{Ar}]4s^2 3d^2$
23	V	$[\text{Ar}]4s^2 3d^3$
24	Cr	$[\text{Ar}]4s^1 3d^5$
25	Mn	$[\text{Ar}]4s^2 3d^5$
26	Fe	$[\text{Ar}]4s^2 3d^6$
27	Co	$[\text{Ar}]4s^2 3d^7$
28	Ni	$[\text{Ar}]4s^2 3d^8$
29	Cu	$[\text{Ar}]4s^1 3d^{10}$
30	Zn	$[\text{Ar}]4s^2 3d^{10}$

Elements	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
M^{2+}	$3d^1$	$3d^2$	$3d^3$	$3d^4$	$3d^5$	$3d^6$	$3d^7$	$3d^8$	$3d^9$	$3d^{10}$

Transition Elements

Variable Oxidation States


Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
3	0	0	0	0	0	0	0	[0]	
		1	1	1	1	1	1	1	[1]
	2	2	2	2	2	2	2	2	2
	3	3	3	3	3	3	3	3	3
	4	4	4	4	4	4	4	[4]	
		5	5	5					
		6	6	6					
			7						

- ✓ **Elements having high oxidation states (greater than +3):** More prevalent in left side of the d-block.
- ✓ **Elements having intermediate oxidation states:** Oxidation state +3 is common to the left of the 3d series and +2 is common for metals from the middle to the right of the block.
- ✓ Once the d⁵ configuration is exceeded, i.e., in the last five elements, the tendency for all the d electrons to participate in bonding decreases.
- ✓ Examples of high oxidation state 3d compounds: KMnO₄ and K₂Cr₂O₇

Transition Elements

Color

- ✓ The colors of d-block metal compounds are a characteristic feature of species with ground state electronic configurations other than d^0 and d^{10} .
- ✓ If absorption occurs in the visible region of the spectrum, the transmitted light is colored with the color complementary to the color of the light absorbed.
- ✓ Color of transition metal ions are due to d-d transitions.

The colour wheel

$\text{Sc}^{3+} \rightarrow$ colourless

$\text{Ti}^{4+} \rightarrow$ colourless

$\text{Ti}^{3+} \rightarrow$ purple

$\text{V}^{4+} \rightarrow$ blue

$\text{V}^{3+} \rightarrow$ green

$\text{V}^{2+} \rightarrow$ violet

$\text{Cr}^{2+} \rightarrow$ blue

$\text{Cr}^{3+} \rightarrow$ green

$\text{Mn}^{3+} \rightarrow$ violet

$\text{Mn}^{2+} \rightarrow$ light pink

$\text{Fe}^{2+} \rightarrow$ light green

$\text{Fe}^{3+} \rightarrow$ yellow

$\text{Co}^{2+} \rightarrow$ pink

$\text{Ni}^{2+} \rightarrow$ green

$\text{Cu}^{2+} \rightarrow$ blue

$\text{Zn}^{2+} \rightarrow$ colourless

Transition Elements

Scandium chloride

Titanium chloride

Color

Vanadium chloride

Chromium chloride

Manganese chloride

Iron chloride

Cobalt chloride

Nickel chloride

Copper chloride

$\text{Sc}^{3+} \rightarrow$ colourless

$\text{Ti}^{4+} \rightarrow$ colourless

$\text{Ti}^{3+} \rightarrow$ purple

$\text{V}^{4+} \rightarrow$ blue

$\text{V}^{3+} \rightarrow$ green

$\text{V}^{2+} \rightarrow$ violet

$\text{Cr}^{2+} \rightarrow$ blue

$\text{Cr}^{3+} \rightarrow$ green

$\text{Mn}^{3+} \rightarrow$ violet

$\text{Mn}^{2+} \rightarrow$ light pink

$\text{Fe}^{2+} \rightarrow$ light green

$\text{Fe}^{3+} \rightarrow$ yellow

$\text{Co}^{2+} \rightarrow$ pink

$\text{Ni}^{2+} \rightarrow$ green

$\text{Cu}^{2+} \rightarrow$ blue

$\text{Zn}^{2+} \rightarrow$ colourless

Transition Elements

Magnetic Properties

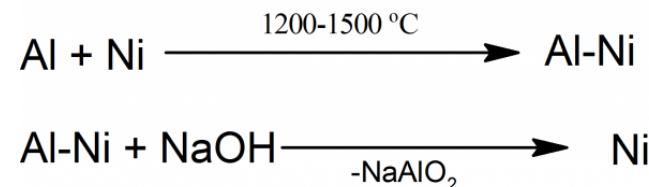
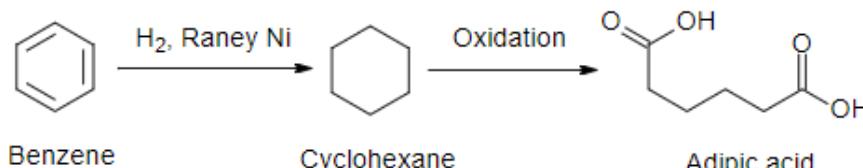
- When a substance is placed in an external magnetic field of strength H , the intensity of the magnetic field in the substance may be greater than or less than H .
- If the field in the substance is greater than H , the substance is paramagnetic. Paramagnetic materials tend to attract magnetic lines of force. Paramagnetism arises as a result of unpaired electron spins in the atom.
- If the field in the substance is less than H , the substance is diamagnetic. Diamagnetic materials tend to repel magnetic lines of force. All substances show diamagnetism.
- Some transition elements such as Fe, Co and Ni are ferromagnetic in which the moments on individual atoms become aligned at all point in the same direction.
- Many transition elements are paramagnetic, because they contain partially filled electron shells.
- Measurement of magnetic moments can distinguish between high-spin and low-spin transition metal octahedral complexes.

Transition Elements

Magnetic Properties

Neodymium

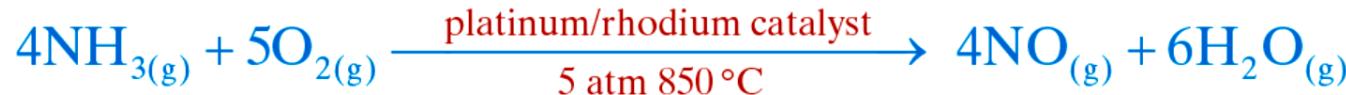
Nd-Fe-B magnetic material known as “Magnet King”

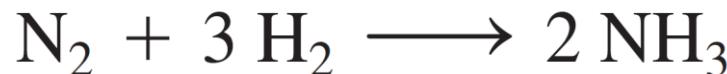


Ferrite

Iron(III) oxide (Fe_2O_3 , rust) blended with small proportions of one or more additional **metallic elements**, such as **Sr, Ba, Mn, Ni, and Zn**

Transition Elements

Catalytic Properties


TiCl_3	Used as the Ziegler–Natta catalyst in the production of polythene.
V_2O_5	Converts SO_2 to SO_3 in the Contact process for making H_2SO_4 .
MnO_2	Used as a catalyst to decompose KClO_3 to give O_2 .
Fe	Promoted iron is used in the Haber–Bosch process for making NH_3 .
FeSO_4 and H_2O_2	Used as Fenton's reagent for oxidizing alcohols to aldehydes.
PdCl_2	Wacker process for converting $\text{C}_2\text{H}_4 + \text{H}_2\text{O} + \text{PdCl}_2$ to $\text{CH}_3\text{CHO} + 2\text{HCl} + \text{Pd}$.
Pd	Used for hydrogenation (e.g. phenol to cyclohexanone).
$\text{PtO}_2 \cdot \text{H}_2\text{O}$	Adams catalyst, used for reductions.
Pt	Formerly used for $\text{SO}_2 \rightarrow \text{SO}_3$ in the Contact process for making H_2SO_4 .
Pt/Rh	Formerly used in the Ostwald process for making HNO_3 to oxidize NH_3 to NO .
Cu	Direct process for manufacture of $(\text{CH}_3)_2\text{SiCl}_2$ used to make silicones.
CuCl_2	Deacon process of making Cl_2 from HCl .
Ni	Raney nickel, numerous reduction processes (e.g. manufacture of hexamethylenediamine, production of H_2 from NH_3 , reducing anthraquinone to anthraquinol in the production of H_2O_2). Reppe synthesis (polymerization of alkynes, e.g. to give benzene or cyclooctatetraene).


Transition Elements

Catalytic Properties: Examples

1. Ostwald process of manufacturing HNO_3

2. Haber process of NH_3 synthesis

Catalyst: The catalyst is made by fusing Fe_3O_4 with KOH and a refractory material such as MgO , SiO_2 or Al_2O_3 .

3. Contact process of manufacture H_2SO_4

Catalyst: vanadium pentoxide (V_2O_5)

4. Monsanto acetic acid synthesis

Transition Elements

Ability to form complexes

- The transition elements have an unparalleled tendency to form coordination compounds with Lewis bases, i.e. with groups which are able to donate an electron pair. These groups are called ligands.
- This ability to form complexes is in marked contrast to the *s*- and *p*-block elements which form only a few complexes.
- The reason transition elements are so good at forming complexes is that they have small, highly charged ions and have vacant low energy orbitals to accept lone pairs of electrons donated by other groups or ligands.
- Complexes where the metal is in the (+III) oxidation state are generally more stable than those where the metal is in the (+II) state.

Definition of Stability

Compounds are regarded as stable if they exist at room temperature, are not oxidized by the air, are not hydrolysed by water vapour and do not disproportionate or decompose at normal temperatures.