

Introduction to Normal distribution:

The normal distribution was first discovered by De-Moivre in 1733 which is sometimes also called as Gaussian distribution. The Normal distribution is also a limiting form of the Binomial distribution under the following conditions:

- n , the number of trials is indefinitely large i.e., $n \rightarrow \infty$.
- neither p nor q is very small.

Mathematical form:

A continuous random variable X is said to follow normal distribution with mean μ and variance σ^2 if its probability density function is given by,

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{(x-\mu)^2}{-2\sigma^2}}, \quad -\infty < x < \infty, -\infty < \mu < \infty, \sigma > 0$$

Here, μ and σ^2 are the two parameters of normal distribution and we can write $X \sim N(\mu, \sigma^2)$, i.e., X follows normal distribution with mean μ and variance σ^2 .

Standard normal variate:

If $X \sim N(\mu, \sigma^2)$, then $Z = \frac{X-\mu}{\sigma}$ is called a standard normal variate. The mean and variance of a standard normal variate are respectively 0 and 1 i.e., $Z \sim N(0, 1)$.

$$E(Z) = E\left(\frac{X-\mu}{\sigma}\right) = \frac{1}{\sigma}[E(X) - \mu] = \frac{1}{\sigma}[\mu - \mu] = 0$$

and $V(Z) = V\left(\frac{X-\mu}{\sigma}\right) = \frac{1}{\sigma^2}[V(X) - 0] = \frac{1}{\sigma^2}[\sigma^2] = 1$

The p.d.f. of standard normal distribution is given by,

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{\frac{z^2}{-2}}, \quad -\infty < z < \infty$$

and we can write $Z \sim N(0, 1)$.

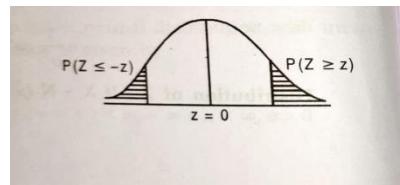
Distribution function of Z:

The distribution function of Z is

$$P(Z \leq z) = \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{\frac{t^2}{-2}} dt$$

The distribution function of standard normal variate Z satisfies the following results:

- ♦ $\Phi(-z) = P(Z \leq -z) = P(Z \geq z) = 1 - P(Z \leq z)$, by symmetry.



- ♦ For any $a < b$

$$\begin{aligned} P(a < X < b) &= P\left\{\frac{a-\mu}{\sigma} < \frac{X-\mu}{\sigma} < \frac{b-\mu}{\sigma}\right\} \\ &= P\left\{\frac{a-\mu}{\sigma} < Z < \frac{b-\mu}{\sigma}\right\} \\ &= P\left\{Z < \frac{b-\mu}{\sigma}\right\} - P\left\{Z < \frac{a-\mu}{\sigma}\right\} \\ &= \Phi\left\{\frac{b-\mu}{\sigma}\right\} - \Phi\left\{\frac{a-\mu}{\sigma}\right\} \end{aligned}$$

Properties of normal distribution:

- ♦ The normal curve is bell-shaped and symmetrical about the line $x = \mu$.
- ♦ The distribution is unimodal.
- ♦ Mean = Median = Mode = μ .

- The two quartiles Q_1 and Q_3 are equidistant from the mean μ and

$$Q_1 = \mu - 0.6745\sigma$$

$$Q_3 = \mu + 0.6745\sigma$$

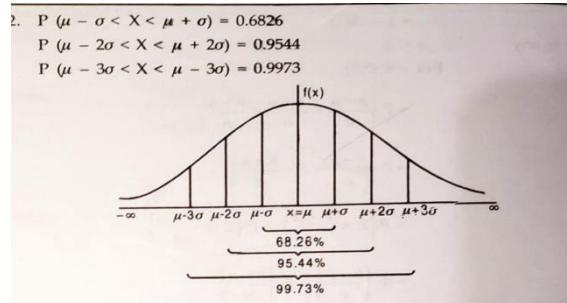
- The points of inflection of the curve are at $x = \mu + \sigma$ and $x = \mu - \sigma$.

Q.D : M.D : S.D :: 10 : 12 : 15

$$\text{M.D.} = \frac{4}{5}\sigma, \quad \text{Q.D.} = \frac{2}{3}\sigma$$

- All odd order central moments are zero.

Area property of normal distribution:



Calculation of probabilities-use of tables:

The areas under the standard normal curve for different values of z are available in statistical tables. The ordinates and areas of the standard normal distribution are available in the statistical tables for different z values from $-\infty$ to z for different positive values of z . Here ordinate is denoted by $\varphi(z)$ and area is denoted by $\emptyset(z)$. $\emptyset(z) = P(Z \leq z)$. The values of $\emptyset(-z)$ for negative values of z can be obtained from the symmetry of the p.d.f.

$$\emptyset(-z) = P(Z \leq -z) = P(Z \geq z) = 1 - P(Z \leq z) = 1 - \emptyset(z)$$

The reason is that the area under the curve to the left of $-z$ is the same as the area under the curve to the right of z . Moreover, the total area of the curve is 1.

TABLE 9-2. AREAS UNDER NORMAL CURVE

Normal probability curve is given by :

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left\{ -\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2 \right\} \quad -\infty < x < \infty$$

and standard normal probability curve is given by :

$$\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right), -\infty < z < \infty$$

where $Z_i = \frac{X_i - E(X_i)}{\sigma_i} \sim N(0, 1)$

The following table gives the shaded area in the diagram, *viz.*, $P(0 < Z < z)$ for different values of z .

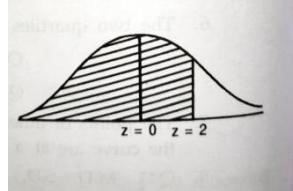
TABLE OF AREAS

❖ If X is a normal variate with mean 5 and standard deviation 4. Find

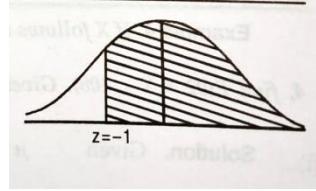
- (i) $P(X < 13)$ (ii) $P(X > 1)$ (iii) $P(4 < X < 9)$

➤ Given, $\mu = 5, \sigma = 4$
 $\therefore Z = \frac{X-\mu}{\sigma} = \frac{X-5}{4}$

$$(i) P(X < 13) = P\left(\frac{X-5}{4} < \frac{13-5}{4}\right) = P(Z < 2) = \phi(2) = 0.5 + 0.4772 = 0.9772$$

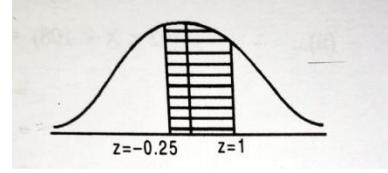


$$(ii) P(X > 1) = P\left(\frac{X-5}{4} > \frac{1-5}{4}\right) = P(Z > -1) = P(Z < 1) = \phi(1) = 0.5 + 0.3413 = 0.8413$$



$$(iii) P(4 < X < 9) = P\left(\frac{4-5}{4} < \frac{X-5}{4} < \frac{9-5}{4}\right) = P(-0.25 < Z < 1) = \phi(1) - \phi(-0.25)$$

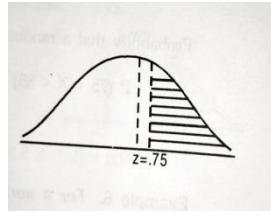
$$= (0.5 + 0.3413) - [1 - \phi(0.25)] = 0.8413 - 1 + (0.5 + 0.0987) = 0.44$$



❖ If $X \sim N(15, 16)$, find the probability that X is larger than 18.

➤ Given $\mu = 15, \sigma^2 = 16$, which gives $\sigma = 4$

$$\text{Now, } P(X > 18) = P\left(\frac{X-15}{4} > \frac{18-15}{4}\right) = P(Z > 0.75) = 1 - P(Z < 0.75) = 1 - \phi(0.75) = 1 - \{0.5 + 0.2734\} = 0.2266$$



❖ The marks obtained in a Statistics examination are assumed to have a normal distribution with mean 75 and variance 25. Find the probability of a randomly selected student obtaining marks:

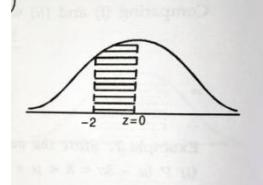
- (i) Between 65 and 75, (ii) Below 70.

It is given that, $P\left(\frac{X-75}{5} < 2\right) = 0.9772, P\left(\frac{X-75}{5} < 1\right) = 0.8413$.

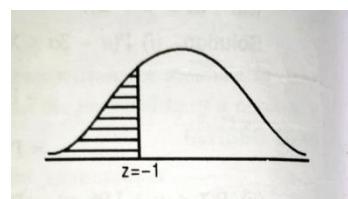
➤ Given, $\mu = 75, \sigma^2 = 25$, which gives $\sigma = 5$

We have to find the probability $P(65 < X < 75), P(X < 70)$

$$(i) P(65 < X < 75) = P\left(\frac{65-75}{5} < \frac{X-75}{5} < \frac{75-75}{5}\right) = P(-2 < Z < 0) = \phi(0) - \phi(-2) = 0.5 - [1 - \phi(2)] = 0.5 - 1 + 0.9772 = 0.4772$$



$$(ii) P(X < 70) = P\left(\frac{X-75}{5} < \frac{70-75}{5}\right) = P(Z < -1) = P(Z > 1) = 1 - P(Z < 1) = 1 - \phi(1) = 1 - 0.8413 = 0.1587$$



- ❖ The marks obtained in a Statistics examination are assumed to have a normal distribution with mean 80 and variance 25. Find the probability of a randomly selected student obtaining marks between 75 and 85.

➤ Given, $\mu=80$, $\sigma^2=25$, which gives $\sigma=5$

We have to find the probability $P(75 < X < 85)$.

TRY IT YOURSELF