Unit 6.2 Rotational, Vibrational and Raman Spectroscopy (Marks 20)

Rotational spectra of diatomic molecules — rigid rotator concept — determination of bond
length — effect of 1sotopic substitution — spectra of non-rigid rotator. Vibrational spectra
of diatomic molecules — harmonic and anharmonic oscillator model — Morse potential -
calculation of force constants — effect of 1sotope - vibrations of polyatomic molecules,
overtone and combination bands (H,0, CO,). Diatomic vibrating rotor — vibration
rotation spectrum of CO. Principle of Raman spectroscopy — rotational and vibrational
Raman spectra of linear molecules — rule of mutual exclusion.

Structure elucidation by IR spectroscopy — finger print region and group frequencies —
effect of hydrogen bonding (alcohol, keto-enol) and coordination to metal.



ROTATIONAL SPECTRA OF RIGID DIATOMIC MOLECULE
(RIGID ROTATOR MODEL)

A rigid diatomic molecule means that the distance between the atoms (bond length) does not
change during rotation. No vibrational movement is taking place during rotation.

Let us consider a diatomic molecule A—B in which the atoms A and B having masses m1 and m2
are joined together by a rigid bond of length rO = r1 + r2 (figure 1). The molecule A—B rotates
about a point C, the centre of gravity: this is defined by the moment, or balancing, equation.
The moment of inertia about C is defined by
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Fig. (1.1) : A rigid diatomic molecule A-B having atomic masses,

m, and m,, joined together by a rigid bond of length r, =r, + r, and

rotates about a pnint C.



ROTATIONAL SPECTRA OF RIGID DIATOMIC MOLECULE
(RIGID ROTATOR MODEL)
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Putting the value of r, &r, from (3) in (2)
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ROTATIONAL SPECTRA OF RIGID DIATOMIC MOLECULE
(RIGID ROTATOR MODEL)

Equation (1.4) defines the moment of inertia conveniently in terms of the atomic masses and
the bond length.

By the use of the Schrddinger equation it may be shown that the rotational energy levels
allowed to the rigid diatomic molecule are given by the expression

E;: L‘.;
Y87l

J(/+1) Joules when [ =0, 1,2 ...... ...(1.6)

In this expression h is Planck’s constant, are / is the moment of inertia,either I, or I, since both
are equal. The quantity J, which can take integral values from zero upwards, is called the
rotational quantum number and each level is (2J + 1) fold degenerate.



ROTATIONAL SPECTRA OF RIGID DIATOMIC MOLECULE
(RIGID ROTATOR MODEL)
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where B is the rotational constant and is given by

2
h a4 h

T
slc 8]

Joule

Denoting the lower state by | and the upper state by |’

Ag, =g, —¢&p
=B['(]'+1)-B]" (J"+1)
B[J'(]'+1)-1"(]"+1)]

use of the selection rule (AJ=%1) or J'—]"=1 gives the frequency of the absorption

line as

v, =Ae; =B[(]"+1)(]"+2)-]"(]+1)]
B(J"+1)2 ..(1.8)
J——]+1
e =B(/+1)(/+2)

e, =BJ(]+1)

Ae=B(]+1)(]J+2-])

Ae=2B(]+1)cm™ where]=0,1,2....



ROTATIONAL SPECTRA OF RIGID DIATOMIC MOLECULE
(RIGID ROTATOR MODEL)

The rotational constant B is assumed to be the same in both lower and upper rotational states
and double prime is dropped from equn (8). The allowed energy levels of a rigid diatomic rotor
are illustrated in Fig. 1.2(a). Thus a step-wise raising of the rotational transitions result in an
absorption spectrum consisting of spectral lines with a separation of 2 B, that is at 2B, 4B, 68, ....
(Fig. 1.2(b)). The lowering of stepwise energy results in identical emission spectrum. Fig. (a)
allowed energy levels of a rigid diatomic rotor showing electric dipole allowed transitions and
(b) the resulting absorption spectrum.
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Fig. 1.2(a) allowed energy levels of a right diatomic rotor showing electric dipole
allowed transitions and 1.2(b) the Iesu]ting absorptinn spectrum.



Selection Rules

The selection rule for a transition between anyv two rotational states is
quantum chemically given by

W = j‘w!.u‘{r'jd'r

where y. and ‘PF- are the wave functions for the rotational states i and j and H is the

permanent dipole moment of the molecule. The dipole moment being a vector quantity can

be expressed by its three components along the Cartesian coordinates axes, 1=[l, + My, + 1

2 2202 00,2 \- : .\ :
and U =H; + I, + 117 . The transition moment integral can be split in terms of the components

ot the dipole moment,

Wi | = My i dt

i |= IV dt

_HE—; 1= iz 1 dt

It atleast any one of the integrals is non zero, then the transition is allowed and torbidden
otherwise. The intensity of an allowed rotational transition dependS on the square of the



Selection Rules

transition dipole moment. Consequently, the intensity of the rotational line depends on the
square of the permanent dipole moment ot the molecule.

Schrédinger equation shows that for a diatomic rigid rotor (in the absence of an external
electric or magnetic field) only transitions in which | changes by one unit, that is, AJ =41
are allowed and all other transactions are torbidden. Thus the selection rule for rotational
spectra is AJf=%1 ( plus sign for absorption and minus sign for emission) and second, the
molecule must have a permanent dipole moment (only hetronucelar diatomic molecules
will exhibit the rotational spectrum since homonuclear diatomic molecules do not possess

permanent dipole moment)



NON RIGID ROTOR

It is observed that in the pure rotational spectra of a diatomic molecule when the
bond in it is considered as a rigid, the spacing between successive lines is same, i.e. 2B
cm™t. However, the assumption that the bond is rigid is only an approximation. Actual
bond is not a rigid bond and the bond length is not constant. It increases with
rotations and is elastic. In a rapidly rotating molecule, there is always a tendency of the
bond to stretch due to centrifugal effects. Hence, the moment of inertia increases with
the rotational energy. This causes rotational levels to be same what closer as the J
value increases. For example, consider the spectrum of hydrogen fluoride

B(-cm_l ) r(nm)
J=0—]=1 20.56 0.0929
J=1—>]=2 20.48 0.0931

J=2—>]=3 |2043 0.0932
J=4—>]=5 |20.31 0.0935

J=10—]=11 | 18.91 0.0969

It is evident that the separation between successive lines (and hence the apparent B
value) decreases steadily with increasing J.



NON RIGID ROTOR

The reason for this decrease may be seen if we calculate internuclear distance from
the B values. In simple harmonic motion a molecular bond is compressed and
extended an equal amount on each side of the equilibrium distance and the average
value of the distance is therefore unchanged, the average value for a bond of
equilibrium length 0.1 nm vibrating between the limits 0.09 and 0.11 nm, we have

re= 0.1 nm

Compression | |
0.09 nm

Stretching | |
0.11 nm



NON RIGID ROTOR
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The value differ from r,. The difference, through small, is not negligible compared with
the precision with which B can be measured spectroscopically. In fact the real situation
is more different. For chemical bonds we know stretching is easier than compression,
so the result r,, being greater than r,, . Thus the more vibration (i.e. higher J value), the
difference is more due to high rotation.



NON RIGID ROTOR

From Schrodinger equation for a non-rigid rotator in simple harmonic force field.
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NON RIGID ROTOR

IfB=10cm?! & =103 cm™?

3
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So D << B

i.e. D is much smaller than B. For small values of ], the correction term is equation
(1.9) is negligibly small. For higher values of J, say 10 or more the value ot D may be

appreciable. The selection rule AJ =11 is of course still valid. The spectral line given by the

equation
BJ(J+1)-Dj2(J +1) cm™

e, =B, (J+1)-DJ (] +1) e



NON RIGID ROTOR

It D is neglected, the spectral lines occur at interval of 2B.
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Fig. 1.3 (a) rotational energy levels and 1.3 (b) allowed spectral lines for rigid and
non-rigid rotors.



NON RIGID ROTOR

For the an harmonic oscillator the expression (1.9) should be moditied as
e =BJ(]+1)-DP2(J+1) + HP (J+1) +K/*(J +1)" em™ ..(1.10)

where the constants H, K etc, are dependent on the molecule. These
constants H, K etc. are very small compared to D and hence can be neglected.

The value ot D is also given bj@,r

_16B°n*uc®  4B°

D
K 52




NON RIGID ROTOR

The spectral line F} is given by the equation

E;,—E =9,=2B(]+1)—4D(] +1) cm™ .(1.11)

It D is neglected, the spectral lines occur at intervals ot 2B. The rotational spectrum ot
a diatomic molecule such as HF, CO etc. can be fitted to the equation (1.11).

Information from D
1. Determination of | value

2 Determination of vibrational frequency

_4pB?
:—02
_, 4B?

InHF B =41.122 cm™

D=852x10"cmt

3
4x(41.122 - 113 : \2
2 = [ , {cm_l] =16.33x10° [c.m_] ]
8.52x107° et - -

5=4.050x10% cm™ = 4050 cm !

accure - is 4138.3 cmm!. The 2% inaccuracy in the present calculation is due
The accurate value is 4138 \ I
partly to the assumption ot simple harmonic motion and partly to the very small and hence

relatively inaccurate, value of D.

The force constant follow directly
K =4n%c%3%1 =960 Nm !

which indicates, as expected, the H-F is a rela_tively strong bond.



